skip to main content


Search for: All records

Creators/Authors contains: "Fu, Xuewei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Suffering from critical instability of lithium (Li) anode, the most commercial electrolytes, carbonate-ester electrolytes, have been restrictedly used in high-energy Li metal batteries (LMBs) despite of their broad implementation in lithium-ion batteries. Here, abundant, natural corn protein, zein, is exploited as a novel additive to stabilize Li anode and effectively prolong the cycling life of LMBs based on carbonate-ester electrolyte. It is discovered that the denatured zein is involved in the formation of solid electrolyte interphase (SEI), guides Li+ deposition and repairs the cracked SEI. In specific, the zein-rich SEI benefits the anion immobilization, enabling uniform Li+ deposition to diminish dendrite growth; the preferential zein-Li reaction effectively repairs the cracked SEI, protecting Li from parasite reactions. The resulting symmetrical Li cell exhibits a prolonged cycling life to over 350 h from <200 h for pristine cell at 1 mA cm􀀀 2 with a capacity of 1 mAh cm^ 2. Paired with LiFePO4 cathode, zein additive markedly improves the electrochemical performance including a higher capacity of 130.1 mAh g^ 1 and a higher capacity retention of ~ 80 % after 200 cycles at 1 C. This study demonstrates a natural protein to be an effective additive for the most commercial electrolytes for advancing performance of LMBs. 
    more » « less
  2. null (Ed.)
  3. High-voltage lithium metal batteries (LMBs) are a promising high-energy density energy storage system. However, their practical implementations are impeded by short lifespan due to uncontrolled lithium dendrite growth, narrow electrochemical stability window, and safety concerns of liquid electrolytes. Here, a porous composite aerogel is reported as the gel electrolyte (GE) matrix, made of metal–organic framework (MOF)@bacterial cellulose (BC), to enable long-life LMBs under high voltage. The effectiveness of suppressing dendrite growth is achieved by regulating ion deposition and facilitating ion conduction. Specifically, two hierarchical mesoporous Zr-based MOFs with different organic linkers, that is, UiO-66 and NH2-UiO-66, are embedded into BC aerogel skeletons. The results indicate that NH2-UiO-66 with anionphilic linkers is more effective in increasing the Li+ transference number; the intermolecular interactions between BC and NH2-UiO-66 markedly increase the electrochemical stability. The resulting GE shows high ionic conductivity (≈1 mS cm−1), high Li+ transference number (0.82), wide electrochemical stability window (4.9 V), and excellent thermal stability. Incorporating this GE in a symmetrical Li cell successfully prolongs the cycle life to 1200 h. Paired with the Ni-rich LiNiCoAlO2 (Ni: Co: Al = 8.15:1.5:0.35, NCA) cathode, the NH2-UiO-66@BC GE significantly improves the capacity, rate performance, and cycle stability, manifesting its feasibility to operate under high voltage. 
    more » « less
  4. Decoupling the ion motion and segmental relaxation is significant for developing advanced solid polymer electrolytes with high ionic conductivity and high mechanical properties. Our previous work proposed a decoupled ion transport in a novel protein-based solid electrolyte. Herein, we investigate the detailed ion interaction/transport mechanisms through first-principles density functional theory (DFT) calculations in a vacuum space. Specifically, we study the important roles of charged amino acids from proteins. Our results show that the charged amino acids (i.e., Arg and Lys) can strongly lock anions (ClO4−). When locked at a proper position (determined from the molecular structure of amino acids), the anions can provide additional hopping sites and facilitate Li+ transport. The findings are supported from our experiments of two protein solid electrolytes, in which the soy protein (with plenty of charged amino acids) electrolyte shows much higher ionic conductivity and lower activation energy in comparison to the zein (lack of charged amino acids) electrolyte. 
    more » « less
  5. The shuttling of polysulfides and uncontrollable growth of lithium dendrites remain the most critical obstacles deteriorating the performance and safety of lithium–sulfur batteries. The separator plays a key role in molecule diffusion and ion transport kinetics; thus, endowing the separator with functions to address the two abovementioned issues is an urgent need. Herein, a protein-based, low-resistance Janus nanofabric is designed and fabricated for simultaneously trapping polysulfides and stabilizing lithium metal. The Janus nanofabric is achieved via combining two functional nanofabric layers, a gelatin-coated conductive nanofabric (G@CNF) as a polysulfide-blocking layer and a gelatin nanofabric (G-nanofabric) as an ion-regulating layer, into a heterostructure. The gelatin coating of G@CNF effectively enhances the polysulfide-trapping ability owing to strong gelatin–polysulfide interactions. The G-nanofabric with exceptional wettability, high ionic conductivity (4.9 × 10 −3 S cm −1 ) and a high lithium-ion transference number (0.73) helps stabilize ion deposition and thus suppresses the growth of lithium dendrites. As a result, a Li/Li symmetric cell with the G-nanofabric delivers ultra-long cycle life over 1000 h with very stable performance. Benefiting from the synergistic effect of the two functional layers of the Janus nanofabric, the resulting Li–S batteries demonstrate excellent capacity, rate performance and cycling stability ( e.g. initial discharge capacity of 890 mA h g −1 with a decay rate of 0.117% up to 300 cycles at 0.5 A g −1 ). 
    more » « less
  6. Developing flexible, robust and lightweight sulfur cathodes by rationally designing their structures and configurations through a viable and scalable strategy is a critical enabler for fulfilling flexible lithium–sulfur (Li–S) batteries. However, besides the requirements for cathode flexibility, intrinsic limitations from the shuttling of lithium polysulfides and the growth of Li dendrites have restricted the widespread implementations of Li–S batteries. Here, we report a wet-processed strategy by dissolving and recrystallizing S in a suitable solvent to fabricate a flexible, binder-free S cathode. Integrating the resulting S cathode with a dual-functional separator has demonstrated to be able to suppress both the shuttle effect and growth of dendritic Li. The wet-processed strategy not only enables the fabrication of flexible and binder-free S-nanomat cathodes, but also facilitates the deposition of the cathodes on the separators. Meanwhile, a dual-functional separator is fabricated by vapor-phase polymerization of polypyrrole (PPy) coating on both surfaces of the commercial separator, which leads to the reduction of the shuttle effect and the suppression of the growth of dendritic Li simultaneously. As a result, by integrating the S-nanomat and the dual-functional separator, the cathode exhibits exceptional mechanical properties and electrochemical performance. Li–S pouch cells are further demonstrated to show stable cycling performance in the bending state, indicating the feasibility of the integrated S cathode for flexible Li–S batteries. 
    more » « less
  7. Abstract

    Developing high‐performance batteries through applying renewable resources is of great significance for meeting ever‐growing energy demands and sustainability requirements. Biomaterials have overwhelming advantages in material abundance, environmental benignity, low cost, and more importantly, multifunctionalities from structural and compositional diversity. Therefore, significant and fruitful research on exploiting various natural biomaterials (e.g., soy protein, chitosan, cellulose, fungus, etc.) for boosting high‐energy lithium‐based batteries by means of making or modifying critical battery components (e.g., electrode, electrolyte, and separator) are reported. In this review, the recent advances and main strategies for adopting biomaterials in electrode, electrolyte, and separator engineering for high‐energy lithium‐based batteries are comprehensively summarized. The contributions of biomaterials to stabilizing electrodes, capturing electrochemical intermediates, and protecting lithium metal anodes/enhancing battery safety are specifically emphasized. Furthermore, advantages and challenges of various strategies for fabricating battery materials via biomaterials are described. Finally, future perspectives and possible solutions for further development of biomaterials for high‐energy lithium‐based batteries are proposed.

     
    more » « less